Semidefinite Relaxations of Products of Nonnegative Forms on the Sphere


الملخص بالإنكليزية

We study the problem of maximizing the geometric mean of $d$ low-degree non-negative forms on the real or complex sphere in $n$ variables. We show that this highly non-convex problem is NP-hard even when the forms are quadratic and is equivalent to optimizing a homogeneous polynomial of degree $O(d)$ on the sphere. The standard Sum-of-Squares based convex relaxation for this polynomial optimization problem requires solving a semidefinite program (SDP) of size $n^{O(d)}$, with multiplicative approximation guarantees of $Omega(frac{1}{n})$. We exploit the compact representation of this polynomial to introduce a SDP relaxation of size polynomial in $n$ and $d$, and prove that it achieves a constant factor multiplicative approximation when maximizing the geometric mean of non-negative quadratic forms. We also show that this analysis is asymptotically tight, with a sequence of instances where the gap between the relaxation and true optimum approaches this constant factor as $d rightarrow infty$. Next we propose a series of intermediate relaxations of increasing complexity that interpolate to the full Sum-of-Squares relaxation, as well as a rounding algorithm that finds an approximate solution from the solution of any intermediate relaxation. Finally we show that this approach can be generalized for relaxations of products of non-negative forms of any degree.

تحميل البحث