A Refined Analysis of Submodular Greedy


الملخص بالإنكليزية

Many algorithms for maximizing a monotone submodular function subject to a knapsack constraint rely on the natural greedy heuristic. We present a novel refined analysis of this greedy heuristic which enables us to: $(1)$ reduce the enumeration in the tight $(1-e^{-1})$-approximation of [Sviridenko 04] from subsets of size three to two; $(2)$ present an improved upper bound of $0.42945$ for the classic algorithm which returns the better between a single element and the output of the greedy heuristic.

تحميل البحث