The origin(s) of the ubiquity of Zipfs law (an inverse power law form for the probability density function (PDF) with exponent $1+1$) is still a matter of fascination and investigation in many scientific fields from linguistic, social, economic, computer sciences to essentially all natural sciences. In parallel, self-excited dynamics is a prevalent characteristic of many systems, from seismicity, financial volatility and financial defaults, to sociology, consumer behaviors, computer sciences, The Internet, neuronal discharges and spike trains in biological neuron networks, gene expression and even criminology. Motivated by financial and seismic modelling, we bring the two threads together by introducing a general class of nonlinear self-excited point processes with fast-accelerating intensities as a function of tension. Solving the corresponding master equations, we find that a wide class of such nonlinear Hawkes processes have the PDF of their intensities described by Zipfs law on the condition that (i) the intensity is a fast-accelerating function of tension and (ii) the distribution of the point fertilities is symmetric. This unearths a novel mechanism for Zipfs law, providing a new understanding of its ubiquity.