Driven by the unprecedented high throughput and low latency requirements in next-generation wireless networks, this paper introduces an artificial intelligence (AI) enabled framework in which unmanned aerial vehicles (UAVs) use non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) techniques to service terrestrial mobile users (MUs). The proposed framework enables the terrestrial MUs to offload their computational tasks simultaneously, intelligently, and flexibly, thus enhancing their connectivity as well as reducing their transmission latency and their energy consumption. To this end, the fundamentals of this framework are first introduced. Then, a number of communication and AI techniques are proposed to improve the quality of experiences of terrestrial MUs. To this end, federated learning and reinforcement learning are introduced for intelligent task offloading and computing resource allocation. For each learning technique, motivations, challenges, and representative results are introduced. Finally, several key technical challenges and open research issues of the proposed framework are summarized.