Local discontinuous Galerkin method for the fractional diffusion equation with integral fractional Laplacian


الملخص بالإنكليزية

In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and convergence of the scheme with the convergence rate no worse than $mathcal{O}(h^{k+frac{1}{2}})$.

تحميل البحث