Quasinormal modes and Purcell factors of coupled loss-gain resonators and index-modulated ring resonators near exceptional points


الملخص بالإنكليزية

We first present a quasinormal mode (QNM) theory for coupled loss-gain resonators working near an exceptional point. Assuming linear media, which can be fully quantified using the complex pole properties of the QNMs, we show how the QNMs yield a quantitatively good model to a full dipole spontaneous emission response in Maxwells equations at various spatial positions and frequencies (linear response). We also develop a highly accurate and intuitive QNM coupled-mode theory, which can be used to rigorously model such systems using only the QNMs of the bare resonators, where the hybrid QNMs of the complete system are automatically obtained. Near a lossy exceptional point, we analytically show how the QNMs yield a Lorentzian-like and a Lorentzian-squared-like response for the spontaneous emission lineshape, consistent with other works. However, using rigorous analytical and numerical solutions for microdisk resonators, we demonstrate that the general lineshapes are far richer than what has been previously predicted. Indeed, the classical picture of spontaneous emission can take on a wide range of positive and negative Purcell factors from the hybrid modes of the coupled loss-gain system. These negative Purcell factors are unphysical and signal a clear breakdown of the classical dipole picture of spontaneous emission in such media, though the negative local density of states is correct. We also show the rich spectral features of the Green function propagators, which can be used to model various physical observables. Second, we present a QNM approach to model index modulated ring resonators working near an exceptional point and show unusual chiral power flow from linearly polarized emitters, in agreement with recent experiments, which is quantitatively explained without invoking the interpretation of a missing dimension (the Jordan vector) and a decoupling from the cavity eigenmodes.

تحميل البحث