Numerical tools for constraints solving are a cornerstone to control verification problems. This is evident by the plethora of research that uses tools like linear and convex programming for the design of control systems. Nevertheless, the capability of linear and convex programming is limited and is not adequate to reason about general nonlinear polynomials constraints that arise naturally in the design of nonlinear systems. This limitation calls for new solvers that are capable of utilizing the power of linear and convex programming to reason about general multivariate polynomials. In this paper, we propose PolyAR, a highly parallelizable solver for polynomial inequality constraints. PolyAR provides several key contributions. First, it uses convex relaxations of the problem to accelerate the process of finding a solution to the set of the non-convex multivariate polynomials. Second, it utilizes an iterative convex abstraction refinement process which aims to prune the search space and identify regions for which the convex relaxation fails to solve the problem. Third, it allows for a highly parallelizable usage of off-the-shelf solvers to analyze the regions in which the convex relaxation failed to provide solutions. We compared the scalability of PolyAR against Z3 8.9 and Yices 2.6 on control designing problems. Finally, we demonstrate the performance of PolyAR on designing switching signals for continuous-time linear switching systems.