Stable States with Non-Zero Entropy under Broken $mathcal{PT}$-Symmetry


الملخص بالإنكليزية

The $mathcal{PT}$-symmetric non-Hermitian systems have been widely studied and explored both in theory and in experiment these years due to various interesting features. In this work, we focus on the dynamical features of a triple-qubit system, one of which evolves under local $mathcal{PT}$-symmetric Hamiltonian. A new kind of abnormal dynamic pattern in the entropy evolution process is identified, which presents a parameter-dependent stable state, determined by the non-Hermiticity of Hamiltonian in the broken phase of $mathcal{PT}$-symmetry. The entanglement and mutual information of a two-body subsystem can increase beyond the initial values, which do not exist in the Hermitian and two-qubit $mathcal{PT}$-symmetric systems. Moreover, an experimental demonstration of the stable states in non-Hermitian system with non-zero entropy and entanglement is realized on a four-qubit quantum simulator with nuclear spins. Our work reveals the distinctive dynamic features in the triple-qubit $mathcal{PT}$-symmetric system and paves the way for practical quantum simulation of multi-party non-Hermitian system on quantum computers.

تحميل البحث