Uncertainty quantification for Particle Image Velocimetry (PIV) is critical for comparing flow fields with Computational Fluid Dynamics (CFD) results, and model design and validation. However, PIV features a complex measurement chain with coupled, non-linear error sources, and quantifying the uncertainty is challenging. Multiple assessments show that none of the current methods can reliably measure the actual uncertainty across a wide range of experiments. Because the current methods differ in assumptions regarding the measurement process and calculation procedures, it is not clear which method is best to use for an experiment. To address this issue, we propose a method to estimate an uncertainty methods sensitivity and reliability, termed the Meta-Uncertainty. The novel approach is automated, local, and instantaneous, and based on perturbation of the recorded particle images. We developed an image perturbation scheme based on adding random unmatched particles to the interrogation window pair considering the signal-to-noise (SNR) of the correlation plane. Each uncertainty schemes response to several trials of random particle addition is used to estimate a reliability metric, defined as the rate of change of the inter-quartile range (IQR) of the uncertainties with increasing levels of particle addition. We also propose applying the meta-uncertainty as a weighting metric to combine uncertainty estimates from individual schemes, based on ideas from the consensus forecasting literature. We use PIV measurements across a range of canonical flows to assess the performance of the uncertainty schemes.The results show that the combined uncertainty method outperforms the individual methods, and establish the meta-uncertainty as a useful reliability assessment tool for PIV uncertainty quantification.