Moir{e} effects in graphene--hBN heterostructures


الملخص بالإنكليزية

Encapsulating graphene in hexagonal Boron Nitride has several advantages: the highest mobilities reported to date are achieved in this way, and precise nanostructuring of graphene becomes feasible through the protective hBN layers. Nevertheless, subtle effects may arise due to the differing lattice constants of graphene and hBN, and due to the twist angle between the graphene and hBN lattices. Here, we use a recently developed model which allows us to perform band structure and magnetotransport calculations of such structures, and show that with a proper account of the moire physics an excellent agreement with experiments can be achieved, even for complicated structures such as disordered graphene, or antidot lattices on a monolayer hBN with a relative twist angle. Calculations of this kind are essential to a quantitative modeling of twistronic devices.

تحميل البحث