In 1964 L. Auslander conjectured that every crystallographic subgroup of an the affine group is virtually solvable, i.e. contains a solvable subgroup of finite index. D. Fried and W. Goldman proved Auslanders conjecture for n = 3 using cohomological arguments. We prove the Auslander conjecture for n < 7. The proof is based mainly on dynamical arguments. In some cases, we use the cohomological argument which we could avoid but it would significantly lengthen the proof.