Efficient Tensor Network ansatz for high-dimensional quantum many-body problems


الملخص بالإنكليزية

We introduce a novel tensor network structure augmenting the well-established Tree Tensor Network representation of a quantum many-body wave function. The new structure satisfies the area law in high dimensions remaining efficiently manipulatable and scalable. We benchmark this novel approach against paradigmatic two-dimensional spin models demonstrating unprecedented precision and system sizes. Finally, we compute the ground state phase diagram of two-dimensional lattice Rydberg atoms in optical tweezers observing non-trivial phases and quantum phase transitions, providing realistic benchmarks for current and future two-dimensional quantum simulations.

تحميل البحث