A High Accuracy Electrical Stopping Power Prediction Model based on Deep Learning Algorithm and its Applications


الملخص بالإنكليزية

Energy loss of energetic ions in solid is crucial in many field, and accurate prediction of the ion stopping power is a long-time goal. Though great efforts have been made, it is still very difficult to find a universal prediction model to accurately calculate the ion stopping power in distinct target materials. Deep learning algorithm is a newly emerged method to solve multi-factors physical problems and can mine the deeply implicit relations among parameters, which make it a powerful tool in energy loss prediction. In this work, we developed an energy loss prediction model based on deep learning. When experimental data are available, our model can give predictions with an average absolute difference close to 5.7%, which is in the same level compared with other widely used programs e.g. SRIM. In the regime without experimental data, our model still can maintain a high performance, and has higher reliability compared with the existing models. The ion range of Au ions in SiC can be calculated with a relative error of 0.6~25% for ions in the energy range of 700~10000 keV, which is much better than the results calculated by SRIM. Moreover, our model support the reciprocity conjecture of ion stopping power in solid proposed by P. Sigmund, which has been known for a long time but can hardly been proved by any of the existing stopping power models. This high-accuracy energy loss prediction model is very important for the research of ion-solid interaction mechanism and enormous relevant applications of energetic ions, such as in semiconductor fabrications, nuclear energy systems and the space facilities.

تحميل البحث