Direct observation of symmetry-breaking in a ferroelectric polar metal


الملخص بالإنكليزية

Ferroelectric materials contain a switchable spontaneous polarization that persists even in the absence of an external electric field. The coexistence of ferroelectricity and metallicity in a material appears to be illusive, since polarization is ill-defined in metals, where the itinerant electrons are expected to screen the long-range dipole interactions necessary for dipole ordering. The surprising discovery of the polar metal, LiOsO3 has generated interest in searching for new polar metals motivated by the prospects of exotic quantum phenomena such as unconventional pairing mechanisms giving rise to superconductivity, topological spin currents, anisotropic upper critical fields, and Mott multiferroics. Previous studies have suggested that the coordination preferences of the Li atom play a key role in stabilizing the polar metal phase of LiOsO3, but a thorough understanding of how polar order and metallicity can coexist remains elusive. Here, we use XUV-SHG as novel technique to directly probe the broken inversion-symmetry around the Li atom. Our results agree with previous theories that the primary structural distortion that gives rise to the polar metal phase in LiOsO3 is a consequence of a sub-Angstrom Li atom displacement along the polar axis. A remarkable agreement between our experimental results and ab initio calculations provide physical insights for connecting the nonlinear response to unit-cell spatial asymmetries. It is shown that XUV-SHG can selectively probe inversion-breaking symmetry in a bulk material with elemental specificity. Compared to optical SHG methods, XUV-SHG fills a key gap for studying structural asymmetries when the structural distortion is energetically separated from the Fermi surface. Further, these results pave the way for time-resolved probing of symmetry-breaking structural phase transitions on femtosecond timescales with element specificity.

تحميل البحث