Weight Prediction for Variants of Weighted Directed Networks


الملخص بالإنكليزية

A weighted directed network (WDN) is a directed graph in which each edge is associated to a unique value called weight. These networks are very suitable for modeling real-world social networks in which there is an assessment of one vertex toward other vertices. One of the main problems studied in this paper is prediction of edge weights in such networks. We introduce, for the first time, a metric geometry approach to studying edge weight prediction in WDNs. We modify a usual notion of WDNs, and introduce a new type of WDNs which we coin the term textit{almost-weighted directed networks} (AWDNs). AWDNs can capture the weight information of a network from a given training set. We then construct a class of metrics (or distances) for AWDNs which equips such networks with a metric space structure. Using the metric geometry structure of AWDNs, we propose modified $k$ nearest neighbors (kNN) methods and modified support-vector machine (SVM) methods which will then be used to predict edge weights in AWDNs. In many real-world datasets, in addition to edge weights, one can also associate weights to vertices which capture information of vertices; association of weights to vertices especially plays an important role in graph embedding problems. Adopting a similar approach, we introduce two new types of directed networks in which weights are associated to either a subset of origin vertices or a subset of terminal vertices . We, for the first time, construct novel classes of metrics on such networks, and based on these new metrics propose modified $k$NN and SVM methods for predicting weights of origins and terminals in these networks. We provide experimental results on several real-world datasets, using our geometric methodologies.

تحميل البحث