Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) VI. Non-detection of sodium with HARPS on the bloated super-Neptune WASP-127b


الملخص بالإنكليزية

WASP-127b is one of the puffiest exoplanets found to date, with a mass only $3.4$ Neptune masses, but a radius larger than Jupiter. It is also located at the border of the Neptune desert, which describes the lack of highly-irradiated Neptune-sized planets, and which remains poorly understood. Its large scale height and bright host star make the transiting WASP-127b a valuable target to characterise in transmission spectroscopy. We use combined EulerCam and TESS light curves to recalculate the systems parameters. Additionally, we present an in-depth search for sodium in four transit observations of WASP-127b, obtained as part of the Hot Exoplanet Atmosphere Resolved with Transit Spectroscopy (HEARTS) survey with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. Two nights from this dataset were analysed independently by another team, claiming a detection of sodium incompatible with previous studies of data from both ground and space. We show that this large sodium detection is actually due to contamination from telluric sodium emissions and the low S/N in the core of the deep stellar sodium lines. When properly accounting for these effects, the previous sodium signal is reduced to an absorption of $0.46pm0.20%$ ($2.3sigma$), which is compatible with analyses of WASP-127b transits carried out with other instruments. We can fit a Gaussian to the D2 line, however, the D1 line was not detected, indicating an unusual line ratio if sodium exists in the atmosphere. Follow-up of WASP-127 at both high-resolution and with high sensitivity will be required to firmly establish the presence of sodium and analyse its line shape.

تحميل البحث