Despite the huge importance of friction in regulating movement in all natural and technological processes, the mechanisms underlying dissipation at a sliding contact are still a matter of debate. Attempts to explain the dependence of measured frictional losses at nanoscale contacts on the electronic degrees of freedom of the surrounding materials have so far been controversial. Here, it is proposed that friction can be explained by considering damping of stick-slip pulses in a sliding contact. Based on friction force microscopy studies of La$_{(1-x)}$Sr$_x$MnO$_3$ films at the ferromagnetic-metallic to paramagnetic-polaronic conductor phase transition, it is confirmed that the sliding contact generates thermally-activated slip pulses in the nanoscale contact, and argued that these are damped by direct coupling into phonon bath. Electron-phonon coupling leads to the formation of Jahn-Teller polarons and a clear increase in friction in the high temperature phase. There is no evidence for direct electronic drag on the atomic force microscope tip nor any indication of contributions from electrostatic forces. This intuitive scenario, that friction is governed by the damping of surface vibrational excitations, provides a basis for reconciling controversies in literature studies as well as suggesting possible tactics for controlling friction.