Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes employed by microelectronics, pharmaceutical, food and other industries. The century-old Kelvin equation is commonly used to describe condensation phenomena and shown to hold well for liquid menisci with diameters as small as several nm. For even smaller capillaries that are involved in condensation under ambient humidity and, hence, of particular practical interest, the Kelvin equation is expected to break down, because the required confinement becomes comparable to the size of water molecules. Here we take advantage of van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation inside. Our smallest capillaries are less than 4 angstroms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, the macroscopic Kelvin equation using the characteristics of bulk water is found to describe accurately the condensation transition in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphene) ones. We show that this agreement is somewhat fortuitous and can be attributed to elastic deformation of capillary walls, which suppresses giant oscillatory behavior expected due to commensurability between atomic-scale confinement and water molecules. Our work provides a much-needed basis for understanding of capillary effects at the smallest possible scale important in many realistic situations.