We report an enhancement of the anomalous Nernst effect (ANE) in Ni/Pt (001) epitaxial superlattices. The transport and magneto-thermoelectric properties were investigated for the Ni/Pt superlattices with various Ni layer thicknesses (${it t}$). The anomalous Nernst coefficient was increased up to more than 1 ${mu}$V K$^{-1}$ for 2.0 nm ${leq}$ ${it t}$ ${leq}$ 4.0 nm, which was the remarkable enhancement compared to the bulk Ni. It has been found that the large transverse Peltier coefficient (${alpha}$$_{xy}$), reaching ${alpha}$$_{xy}$ = 4.8 A K$^{-1}$ m$^{-1}$ for ${it t}$ = 4.0 nm, plays a prime role for the enhanced ANE of the Ni/Pt (001) superlattices.