Photoelectron spectroscopy of laser-dressed atomic helium


الملخص بالإنكليزية

Photoelectron emission from excited states of laser-dressed atomic helium is analyzed with respect to laser intensity-dependent excitation energy shifts and angular distributions. In the two-color XUV (exteme ultra-violet) -- IR (infrared) measurement, the XUV photon energy is scanned between SI{20.4}{electronvolt} and the ionization threshold at SI{24.6}{electronvolt}, revealing electric dipole-forbidden transitions for a temporally overlapping IR pulse ($sim!SI{e12}{wattper centimetersquared}$). The interpretation of the experimental results is supported by numerically solving the time-dependent Schrodinger equation in a single-active-electron approximation.

تحميل البحث