Relations between global forcing number and maximum anti-forcing number of a graph


الملخص بالإنكليزية

The global forcing number of a graph G is the minimal cardinality of an edge subset discriminating all perfect matchings of G, denoted by gf(G). For any perfect matching M of G, the minimal cardinality of an edge subset S in E(G)-M such that G-S has a unique perfect matching is called the anti-forcing number of M,denoted by af(G, M). The maximum anti-forcing number of G among all perfect matchings is denoted by Af(G). It is known that the maximum anti-forcing number of a hexagonal system equals the famous Fries number. We are interested in some comparisons between the global forcing number and the maximum anti-forcing number of a graph. For a bipartite graph G, we show that gf(G)is larger than or equal to Af(G). Next we mainly extend such result to non-bipartite graphs, which is the set of all graphs with a perfect matching which contain no two disjoint odd cycles such that their deletion results in a subgraph with a perfect matching. For any such graph G, we also have gf(G) is larger than or equal to Af(G) by revealing further property of non-bipartite graphs with a unique perfect matching. As a consequence, this relation also holds for the graphs whose perfect matching polytopes consist of non-negative 1-regular vectors. In particular, for a brick G, de Carvalho, Lucchesi and Murty [4] showed that G satisfying the above condition if and only if G is solid, and if and only if its perfect matching polytope consists of non-negative 1-regular vectors. Finally, we obtain tight upper and lower bounds on gf(G)-Af(G). For a connected bipartite graph G with 2n vertices, we have that 0 leq gf(G)-Af(G) leq 1/2 (n-1)(n-2); For non-bipartite case, -1/2 (n^2-n-2) leq gf(G)-Af(G) leq (n-1)(n-2).

تحميل البحث