A short-range metastable defect in the double layer ice


الملخص بالإنكليزية

Although the phase of water has extensively investigated whether there exists a defect distorting only locally the structure still under debate. Here we report a localized 5775 defect phase presented in the double layer ice on the Au (111) surface, which is a metastable structure with 5- and 7-membered rings compared with a perfect hexagonal one. Without altering the total number of the hydrogen bonds of the ice, the defect only introduces 0.08 {AA} molecular displacement and 3.27% interaction energy change outside the defected area. Such defect also exists without Au support but causes a larger lattice relaxation or smaller interaction energy change. The excessively high barrier as well as the low quantum tunneling and thermodynamic probabilities hinder the formation of the defect by post-grown isomerization from the perfect to the defected structure. This finding indicates that the defected ice is stable, and the defect can be formed during the ice growth stage.

تحميل البحث