Photonic systems with parity-time (PT) symmetry and topology are attracting considerable attentions. In this work, topological near-zero edge states are studied in PT-symmetric photonic lattice and the results indicate that the near-zero edge states can be broken spontaneously in spite of the unbroken PT symmetry. To achieve the stable topological near-zero mode, a binary lattice with carefully designed PT-symmetric is proposed. Further study shows such a structure supports a stable topological interface state experiences phase transition similar to the bulk states in infinite lattice and thus possess real-eigenvalues even with unbroken PT phase. Our study enriches the content of non-Hermitian topological physics and might have potential applications in the fields of topological lasing and quantum computation.