This paper concerns the generalized Nash equilibrium problem of polynomials (GNEPP). We apply the Gauss-Seidel method and Lasserre type Moment-SOS relaxations to solve GNEPPs. The convergence of the Gauss-Seidel method is known for some special GNEPPs, such as generalized potential games (GPGs). We give a sufficient condition for GPGs and propose a numerical certificate, based on Putinars Positivstellensatz. Numerical examples for both convex and nonconvex GNEPPs are given for demonstrating the efficiency of the proposed method.