The Collatz tree as a Hilbert hotel: a proof of the 3x + 1 conjecture


الملخص بالإنكليزية

The yet unproven Collatz conjecture maintains that repeatedly connecting even numbers n to n/2, and odd n to 3n + 1, connects all natural numbers by a unique root path to the Collatz tree with 1 as its root. The Collatz tree proves to be a Hilbert hotel. Numbers divisible by 2 or 3 depart. An infinite binary tree remains with one upward and one rightward child per number. Rightward numbers, and infinitely many generations of their upward descendants, each with a well-defined root path, depart thereafter. The Collatz tree is a Hilbert hotel because still higher upward descendants keep descending to all unoccupied nodes. The density of already departed numbers comes nevertheless arbitrarily close to 100% of the natural numbers. The latter proves the Collatz conjecture.

تحميل البحث