A hydrophobic-interaction-based mechanism trigger docking between the SARS CoV 2 spike and angiotensin-converting enzyme 2


الملخص بالإنكليزية

A recent experimental study found that the binding affinity between the cellular receptor human angiotensin converting enzyme 2 (ACE2) and receptor-binding domain (RBD) in spike (S) protein of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more than 10-fold higher than that of the original severe acute respiratory syndrome coronavirus (SARS-CoV). However, main-chain structures of the SARS-CoV-2 RBD are almost the same with that of the SARS-CoV RBD. Understanding physical mechanism responsible for the outstanding affinity between the SARS-CoV-2 S and ACE2 is the urgent challenge for developing blockers, vaccines and therapeutic antibodies against the coronavirus disease 2019 (COVID-19) pandemic. Considering the mechanisms of hydrophobic interaction, hydration shell, surface tension, and the shielding effect of water molecules, this study reveals a hydrophobic-interaction-based mechanism by means of which SARS-CoV-2 S and ACE2 bind together in an aqueous environment. The hydrophobic interaction between the SARS-CoV-2 S and ACE2 protein is found to be significantly greater than that between SARS-CoV S and ACE2. At the docking site, the hydrophobic portions of the hydrophilic side chains of SARS-CoV-2 S are found to be involved in the hydrophobic interaction between SARS-CoV-2 S and ACE2. We propose a method to design live attenuated viruses by mutating several key amino acid residues of the spike protein to decrease the hydrophobic surface areas at the docking site. Mutation of a small amount of residues can greatly reduce the hydrophobic binding of the coronavirus to the receptor, which may be significant reduce infectivity and transmissibility of the virus.

تحميل البحث