The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing the system with both disorder and interactions. We instead start with a clean non-Fermi liquid near a 2D ferromagnetic quantum critical point and consider the effects of disorder. In contrast with the disordered Fermi liquid, we find that our model does not suffer from runaway flows to strong coupling and the system has a marginally stable fixed point with perfect conduction.