Pressure-tailored lithium deposition and dissolution in lithium metal batteries


الملخص بالإنكليزية

A porous electrode resulting from unregulated Li growth is the major cause of the low Coulombic efficiency and potential safety hazards of rechargeable Li metal batteries. Strategies aiming to achieve large granular Li deposits have been extensively explored; yet, the ideal Li deposits, which consist of large Li particles that are seamlessly packed on the electrode and can be reversibly deposited and stripped, have never been achieved. Here, by controlling the uniaxial stack pressure during battery operation, a dense Li deposition (99.49% electrode density) with an ideal columnar structure has been achieved. Using multi-scale characterization and simulation, we elucidated the critical role of stack pressure on Li nucleation, growth and dissolution processes, and developed innovative strategies to maintain the ideal Li morphology during extended cycling. The precision manipulation of Li deposition and dissolution is a critical step to enable fast charging and low temperature operation for Li metal batteries.

تحميل البحث