Exoplanets Sciences with Nulling Interferometers and a Single-Mode Fiber-Fed Spectrograph


الملخص بالإنكليزية

Understanding the atmospheres of exoplanets is a milestone to decipher their formation history and potential habitability. High-contrast imaging and spectroscopy of exoplanets is the major pathway towards the goal. Directly imaging of an exoplanet requires high spatial resolution. Interferometry has proven to be an effective way of improving spatial resolution. However, means of combining interferometry, high-contrast imaging, and high-resolution spectroscopy have been rarely explored. To fill in the gap, we present the dual-aperture fiber nuller (FN) for current-generation 8-10 meter telescopes, which provides the necessary spatial and spectral resolution to (1) conduct follow-up spectroscopy of known exoplanets; and (2) detect planets in debris-disk systems. The concept of feeding a FN to a high-resolution spectrograph can also be used for future space and ground-based missions. We present a case study of using the dual-aperture FN to search for biosignatures in rocky planets around M stars for a future space interferometry mission. Moreover, we discuss how a FN can be equipped on future extremely large telescopes by using the Giant Magellan Telescope (GMT) as an example.

تحميل البحث