Zodiacal Exoplanets in Time. XI. The Orbit and Radiation Environment of the Young M Dwarf-Hosted Planet K2-25b


الملخص بالإنكليزية

M dwarf stars are high-priority targets for searches for Earth-size and potentially Earth-like planets, but their planetary systems may form and evolve in very different circumstellar environments than those of solar-type stars. To explore the evolution of these systems, we obtained transit spectroscopy and photometry of the Neptune-size planet orbiting the ~650 Myr-old Hyades M dwarf K2-25. An analysis of the variation in spectral line shape induced by the Doppler shadow of the planet indicate that the planets orbit is closely aligned with the stellar equator (lambda = -1.7+5.8/-3.7 deg), and that an eccentric orbit found by previous work could arise from perturbations by another planet on a co-planar orbit. We detect no significant variation in the depth of the He I line at 1083 nm during transit. A model of atmospheric escape as a isothermal Parker wind with a solar composition show that this non-detection is not constraining compared to escape rate predictions of ~0.1 Mearth/Gyr; at such rates, at least several Gyr are required for a Neptune-like planet to evolve into a rocky super-Earth.

تحميل البحث