For a central perfect extension of groups $A rightarrowtail G twoheadrightarrow Q$, we study the maps $H_3(A,mathbb{Z}) to H_3(G, mathbb{Z})$ and $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$ provided that $Asubseteq G$. First we show that the image of $H_3(A, mathbb{Z})to H_3(G, mathbb{Z})/rho_ast(Aotimes_mathbb{Z} H_2(G, mathbb{Z}))$ is $2$-torsion where $rho: A times G to G$ is the usual product map. When $BQ^+$ is an $H$-space, we also study the kernel of the surjective homomorphism $H_3(G, mathbb{Z}) to H_3(Q, mathbb{Z})$.