Heralding Quantum Entanglement between Two Room-Temperature Atomic Ensembles


الملخص بالإنكليزية

Establishing quantum entanglement between individual nodes is crucial for building large-scale quantum networks, enabling secure quantum communication, distributed quantum computing, enhanced quantum metrology and fundamental tests of quantum mechanics. However, the shared entanglements have been merely observed in either extremely low-temperature or well-isolated systems, which limits the quantum networks for the real-life applications. Here, we report the realization of heralding quantum entanglement between two atomic ensembles at room temperature, where each of them contains billions of motional atoms. By measuring the mapped-out entangled state with quantum interference, concurrence and correlation, we strongly verify the existence of a single excitation delocalized in two atomic ensembles. Remarkably, the heralded quantum entanglement of atomic ensembles can be operated with the feature of delay-choice, which illustrates the essentiality of the built-in quantum memory. The demonstrated building block paves the way for constructing quantum networks and distributing entanglement across multiple remote nodes at ambient conditions.

تحميل البحث