Probabilistic proofs of large deviation results for sums of semiexponential random variables and explicit rate function at the transition


الملخص بالإنكليزية

Asymptotics deviation probabilities of the sum S n = X 1 + $times$ $times$ $times$ + X n of independent and identically distributed real-valued random variables have been extensively investigated, in particular when X 1 is not exponentially integrable. For instance, A.V. Nagaev formulated exact asymptotics results for P(S n > x n) when x n > n 1/2 (see, [13, 14]). In this paper, we derive rough asymptotics results (at logarithmic scale) with shorter proofs relying on classical tools of large deviation theory and expliciting the rate function at the transition.

تحميل البحث