Many-body effects in suspended graphene probed through magneto-phonon resonances


الملخص بالإنكليزية

We make use of micro-magneto Raman scattering spectroscopy to probe magneto-phonon resonances (MPR) in suspended mono- to penta-layer graphene. MPR correspond to avoided crossings between zone-center optical phonons (G-mode) and optically-active inter Landau level (LL) transitions and provide a tool to perform LL spectroscopy at a fixed energy ($approx 197~rm{meV}$) set by the G-mode phonon. Using a single-particle effective bilayer model, we readily extract the velocity parameter associated with each MPR. A single velocity parameter slightly above the bulk graphite value suffices to fit all MPR for $Ngeq2$ layer systems. In contrast, in monolayer graphene, we find that the velocity parameter increases significantly from $(1.23pm 0.01) times 10^6~mathrm{m.s^{-1}}$ up to $(1.45pm0.02) times 10^6~mathrm{m.s^{-1}}$ as the first to third optically-active inter LL transition couple to the G-mode phonon. This result is understood as a signature of enhanced many-body effects in unscreened graphene.

تحميل البحث