The maximum entropy principle and volumetric properties of Orlicz balls


الملخص بالإنكليزية

We study the precise asymptotic volume of balls in Orlicz spaces and show that the volume of the intersection of two Orlicz balls undergoes a phase transition when the dimension of the ambient space tends to infinity. This generalizes a result of Schechtman and Schmuckenschlager [GAFA, Lecture notes in Math. 1469 (1991), 174--178] for $ell_p^d$-balls. As another application, we determine the precise asymptotic volume ratio for $2$-concave Orlicz spaces $ell_M^d$. Our method rests on ideas from statistical mechanics and large deviations theory, more precisely the maximum entropy or Gibbs principle for non-interacting particles, and presents a natural approach and fresh perspective to such geometric and volumetric questions. In particular, our approach explains how the $p$-generalized Gaussian distribution occurs in problems related to the geometry of $ell_p^d$-balls, which are Orlicz balls when the Orlicz function is $M(t) = |t|^p$.

تحميل البحث