Generalized Many-Way Few-Shot Video Classification


الملخص بالإنكليزية

Few-shot learning methods operate in low data regimes. The aim is to learn with few training examples per class. Although significant progress has been made in few-shot image classification, few-shot video recognition is relatively unexplored and methods based on 2D CNNs are unable to learn temporal information. In this work we thus develop a simple 3D CNN baseline, surpassing existing methods by a large margin. To circumvent the need of labeled examples, we propose to leverage weakly-labeled videos from a large dataset using tag retrieval followed by selecting the best clips with visual similarities, yielding further improvement. Our results saturate current 5-way benchmarks for few-shot video classification and therefore we propose a new challenging benchmark involving more classes and a mixture of classes with varying supervision.

تحميل البحث