Thermal conductivity and enhanced thermoelectric performance of SnTe bilayer


الملخص بالإنكليزية

Tin chalcogenides (SnS, SnSe, and SnTe) are found to have improved thermoelectric properties upon the reduction of their dimensionality. Here we found the tilted AA + s stacked two-dimensional (2D) SnTe bilayer as the most stable phase among several stackings as predicted by the structural optimization and phonon transport properties. The carrier mobility and relaxation time are evaluated using the deformation potential theory, which is found to be relatively high due to the high 2D elastic modulus, low deformation potential constant, and moderate effective masses. The SnTe bilayer shows a high Seebeck coefficient, high electrical conductivity, and ultralow lattice thermal conductivity. High TE figure of merit (ZT) values, as high as 4.61 along the zigzag direction, are predicted for the SnTe bilayer. These ZT values are much enhanced as compared to the bulk as well as monolayer SnTe and other 2D compounds.

تحميل البحث