Two-dimensional Weyl nodal line semimetal in high Curie temperature d0 ferromagnet K2N monolayer


الملخص بالإنكليزية

Nodal line semimetals in two-dimensional (2-D) materials have attracted intense attention currently. From fundamental physics and spintronic applications points of view, high Curie temperature ferromagnetic (FM) ones with nodal lines robust against spin-orbit coupling (SOC) are significantly in desirable. Here, we propose that FM K2N monolayer is such Weyl nodal line semimetal. We show that K2N monolayer is dynamically stable, and has a FM ground magnetic state with the out-of-plane [001] magnetization. It shows two nodal lines in the low-energy band structures. Both nodal lines are robust against SOC, under the protection of mirror symmetry. We construct an effective Hamiltonian, which can well characterize the nodal lines in the system. Remarkably, the nodal line semimetal proposed here is distinct from the previously studied ones in that K2N monolayer is 2-D d0-type ferromagnet with the magnetism arising from the partially filled N-p orbitals, which can bring special advantages in spintronic applications. Besides, the Curie temperature in K2N monolayer is estimated to be 942K, being significantly higher than previous FM nodal lines materials. We also find that, specific tensile strains can transform the nodal line from type-I to a type-II one, making its nodal line characteristics even more interesting.

تحميل البحث