Photo Thermal Effect Graphene Detector Featuring 105 Gbit s-1 NRZ and 120 Gbit s-1 PAM4 Direct Detection


الملخص بالإنكليزية

The challenge of next generation datacom and telecom communication is to increase the available bandwidth while reducing the size, cost and power consumption of photonic integrated circuits. Silicon (Si) photonics has emerged as a viable solution to reach these objectives. Graphene, a single-atom thick layer of carbon5, has been recently proposed to be integrated with Si photonics because of its very high mobility, fast carrier dynamics and ultra-broadband optical properties. Here, we focus on graphene photodetectors for high speed datacom and telecom applications. High speed graphene photodetectors have been demonstrated so far, however the most are based on the photo-bolometric (PB) or photo-conductive (PC) effect. These devices are characterized by large dark current, in the order of milli-Amperes , which is an impairment in photo-receivers design, Photo-thermo-electric (PTE) effect has been identified as an alternative phenomenon for light detection. The main advantages of PTE-based photodetectors are the optical power to voltage conversion, zero-bias operation and ultra-fast response. Graphene PTE-based photodetectors have been reported in literature, however high-speed optical signal detection has not been shown. Here, we report on an optimized graphene PTE-based photodetector with flat frequency response up to 65 GHz. Thanks to the optimized design we demonstrate a system test leading to direct detection of 105 Gbit s-1 non-return to zero (NRZ) and 120 Gbit s-1 4-level pulse amplitude modulation (PAM) optical signals

تحميل البحث