Ring formation and dust dynamics in wind-driven protoplanetary discs: global simulations


الملخص بالإنكليزية

Large-scale vertical magnetic fields are believed to play a key role in the evolution of protoplanetary discs. Associated with non-ideal effects, such as ambipolar diffusion, they are known to launch a wind that could drive accretion in the outer part of the disc ($R> 1$ AU). They also potentially lead to self-organisation of the disc into large-scale axisymmetric structures, similar to the rings recently imaged by sub-millimetre or near-infrared instruments (ALMA and SPHERE). The aim of this paper is to investigate the mechanism behind the formation of these gaseous rings, but also to understand the dust dynamics and its emission in discs threaded by a large-scale magnetic field. To this end, we performed global magneto-hydrodynamics (MHD) axisymmetric simulations with ambipolar diffusion using a modified version of the PLUTO code. We explored different magnetisations with the midplane $beta$ parameter ranging from $10^5$ to $10^3$ and included dust grains -- treated in the fluid approximation -- ranging from $100 mu$m to 1 cm in size. We first show that the gaseous rings (associated with zonal flows) are tightly linked to the existence of MHD winds. Secondly, we find that millimetre-size dust is highly sedimented, with a typical scale height of 1 AU at $R=100$ AU for $beta=10^4$, compatible with recent ALMA observations. We also show that these grains concentrate into pressure maxima associated with zonal flows, leading to the formation of dusty rings. Using the radiative transfer code MCFOST, we computed the dust emission and make predictions on the ring-gap contrast and the spectral index that one might observe with interferometers like ALMA.

تحميل البحث