We present a search for high-energy $gamma$-ray emission from 566 Active Galactic Nuclei at redshift $z > 0.2$, from the 2WHSP catalog of high-synchrotron peaked BL Lac objects with eight years of Fermi-LAT data. We focus on a redshift range where electromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above $approx$ $5sigma$ (TS $geq 25$) in the 1 - 300 GeV energy range. By discriminating significant sources based on their $gamma$-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modeling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic-ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.