On time inhomogeneous stochastic It^o equations with drift in $L_{d+1}$


الملخص بالإنكليزية

We prove the solvability of It^o stochastic equations with uniformly nondegenerate, bounded, measurable diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Actually, the powers of summability of the drift in $x$ and $t$ could be different. Our results seem to be new even if the diffusion is constant. The method of proving the solvability belongs to A.V. Skorokhod. Weak uniqueness of solutions is an open problem even if the diffusion is constant.

تحميل البحث