We build a double quantum-dot system with Coulomb coupling and aim at studying the connections among the entropy production, free energy, and information flow. By utilizing the concepts in stochastic thermodynamics and graph theory analysis, the Clausius and nonequilibrium free energy inequalities are built to interpret the local second law of thermodynamics for subsystems. A fundamental set of cycle fluxes and affinities is identified to decompose the two inequalities by using Schnakenbergs network theory. The results show that the thermodynamic irreversibility has the energy-related and information-related contributions. A global cycle associated with the feedback-induced information flow would pump electrons against the bias voltage, which implements a Maxwell Demon.