Searching for Integrated Sachs-Wolfe Effect from Fermi-LAT Diffuse $gamma$-ray Map


الملخص بالإنكليزية

In this paper, we estimate the cross-correlation power spectra between the Planck 2018 cosmic microwave background (CMB) temperature anisotropy map and the unresolved $gamma$-ray background (UGRB) from the 9-years Fermi-Large Area Telescope (LAT) data. In this analysis, we use up to nine energy bins over a wide energy range of [0.631, 1000] GeV from the Fermi-LAT UGRB data. Firstly, we find that the Fermi data with the energy ranges [1.202, 2.290] GeV and [17.38, 36.31] GeV show the positive evidence for the Integrated Sachs-Wolfe (ISW) effect at $1.8sigma$ confidence level, and the significance would be increased to $2.7sigma$ when using these two energy bins together. Secondly, we apply the single power-law model to normalize the amplitude and use all the nine Fermi energy bins to measure the significance of the ISW effect, we obtained ${rm A_{amp}}=0.95 pm 0.53$ ($68%$ C.L.). For the robustness test, we implement a null hypothesis by randomizing the Fermi mock maps of nine energy bins and obtain the non-detection of ISW effect, which confirms that the ISW signal comes from the Fermi-LAT diffuse $gamma$-ray data and is consistent with the standard $Lambda$CDM model prediction essentially. We use a cross-correlation coefficient to show the relation between different energy bins. Furthermore, we vary the cut ranges $|b|$ of galactic plane on the mask of Fermi map and carefully check the consequent influence on the ISW signal detection.

تحميل البحث