Large diameter TiO$_2$ nanotubes enable integration of conformed hierarchical and blocking layers for enhanced dye-sensitized solar cell efficiency


الملخص بالإنكليزية

In the present work we grow anodic TiO$_2$ nanotube layer with tube diameter ~ 500 nm and an open tube mouth. We use this morphology in dye-sensitized solar cells (DSSCs) and show that these tubes allow the construction of hybrid hierarchical photoanode structures of nanotubes with a defined and wall-conformance TiO2 nanoparticles decoration. At the same time, the large diameter allows the successful establishment of an additional (insulating) blocking layer of SiO$_2$ or Al$_2$O$_3$. We show that this combination of hierarchical structure and blocking layer significantly enhances the solar cell efficiency by suppressing recombination reactions. In such a DSSC structure, the solar cell efficiency under back side illumination with AM1.5 illumination is enhanced from 5% neat tube to 7 %.

تحميل البحث