We propose that neuromorphic computing can perform quantum operations. Spiking neurons in the active or silent states are connected to the two states of Ising spins. A quantum density matrix is constructed from the expectation values and correlations of the Ising spins. As a step towards quantum computation we show for a two qubit system that quantum gates can be learned as a change of parameters for neural network dynamics. Our proposal for probabilistic computing goes beyond Markov chains, which are based on transition probabilities. Constraints on classical probability distributions relate changes made in one part of the system to other parts, similar to entangled quantum systems.