Rigidity theorems for constant weighted mean curvature hypersurfaces


الملخص بالإنكليزية

In this article, we study hypersurfaces $Sigmasubset mathbb{R}^{n+1}$ with constant weighted mean curvature. Recently, Wei-Peng proved a rigidity theorem for CWMC hypersurfaces that generalizes Le-Sesum classification theorem for self-shrinker. More specifically, they showed that a complete CWMC hypersurface with polynomial volume growth, bounded norm of the second fundamental form and that satisfies $|A|^2H(H-lambda)leq H^2/2$ must either be a hyperplane or a generalized cylinder. We generalize this result by removing the bound condition on the norm of the second fundamental form. Moreover, we prove that under some conditions if the reverse inequality holds then the hypersurface must either be a hyperplane or a generalized cylinder. As an application of one of the results proved in this paper, we will obtain another version of the classification theorem obtained by the authors of this article, that is, we show that under some conditions, a complete CWMC hypersurface with $Hgeq 0$ must either be a hyperplane or a generalized cylinder.

تحميل البحث