Exchange coupling in a linear chain of three quantum-dot spin qubits in silicon


الملخص بالإنكليزية

Quantum gates between spin qubits can be implemented leveraging the natural Heisenberg exchange interaction between two electrons in contact with each other. This interaction is controllable by electrically tailoring the overlap between electronic wavefunctions in quantum dot systems, as long as they occupy neighbouring dots. An alternative route is the exploration of superexchange - the coupling between remote spins mediated by a third idle electron that bridges the distance between quantum dots. We experimentally demonstrate direct exchange coupling and provide evidence for second neighbour mediated superexchange in a linear array of three single-electron spin qubits in silicon, inferred from the electron spin resonance frequency spectra. We confirm theoretically through atomistic modeling that the device geometry only allows for sizeable direct exchange coupling for neighbouring dots, while next nearest neighbour coupling cannot stem from the vanishingly small tail of the electronic wavefunction of the remote dots, and is only possible if mediated.

تحميل البحث