The discovery of artificial gauge fields, controlling the dynamics of uncharged particles that otherwise elude the influence of standard electric or magnetic fields, has revolutionized the field of quantum simulation. Hence, developing new techniques to induce those fields is essential to boost quantum simulation in photonic structures. Here, we experimentally demonstrate in a photonic lattice the generation of an artificial gauge field by modifying the input state, overcoming the need to modify the geometry along the evolution or imposing the presence of external fields. In particular, we show that an effective magnetic flux naturally appears when light beams carrying orbital angular momentum are injected into waveguide lattices with certain configurations. To demonstrate the existence of that flux, we measure the resulting Aharonov-Bohm caging effect. Therefore, we prove the possibility of switching on and off artificial gauge fields by changing the topological charge of the input state, paving the way to access different topological regimes in one single structure, which represents an important step forward for optical quantum simulation.