Speed of sound from fundamental physical constants


الملخص بالإنكليزية

Two dimensionless fundamental physical constants, the fine structure constant $alpha$ and the proton-to-electron mass ratio $frac{m_p}{m_e}$ are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant which provides the upper bound for the speed of sound in condensed phases, $v_u$. We find that $frac{v_u}{c}=alphaleft(frac{m_e}{2m_p}right)^{frac{1}{2}}$, where $c$ is the speed of light in vacuum. We support this result by a large set of experimental data and first principles computations for atomic hydrogen. Our result expands current understanding of how fundamental constants can impose new bounds on important physical properties.

تحميل البحث